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Controlling chaos in a thermal convection loop 
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Philadelphia, PA 19104-6315, USA 

(Received 24 May 1991) 

It is demonstrated experimentally and theoretically that through the use of an active 
(feedback) controller one can dramatically modify the nature of the flow in a toroidal 
thermal convection loop heated from below and cooled from above. In  particular, we 
show how a simple control strategy can be used to suppress (laminarize) the naturally 
occurring chaotic motion or induce chaos in otherwise time-independent flow. The 
control strategy consists of sensing the deviation of fluid temperatures from desired 
values at  a number of locations inside the loop and then altering the wall heating to 
either counteract or enhance such deviations. 

1. Introduction 
Chaotic behaviour is abundant both in nature and in manmade devices. On 

occasion, chaos is a desired feature as it enhances mixing and chemical reactions and 
provides a vigorous mechanism for transporting heat and/or mass. However, in 
many other situations, chaos is an undesired phenomenon which may lead to 
vibrations, irregular operation, fatigue failure in mechanical systems, temperature 
oscillations which may exceed safe operational conditions in thermal systems, and 
increased drag in flow systems. Also, since chaotic behaviour cannot be predicted in 
detail, it  may be detrimental to the smooth operation of various devices. Clearly, the 
ability to control chaos (i.e. promote or eliminate it) is of much practical importance. 

To date, most of the work in this area has focused on using predetermined means 
(in contrast to feedback control) to control the nature of flows. For example, Ottino 
(1989) used modulated (furrowed) conduits to promote chaos and enhance mixing 
and Wang & Bau (1990, 1991) demonstrated that time-periodic heating in a thermal 
convection loop might advance the transition to chaos. Much less attention has been 
given to the possibility of modifying the nature of convective flows through the use 
of feedback control which exploits or suppresses naturally occurring instabilities in 
the flow. 

We believe that feedback control strategies hold considerable promise as a 
practical means of modifying flows so as to achieve a desired behaviour. Recently, 
Ott, Grebogi & Yorke (1990a, b )  argued and demonstrated through numerical 
experiments with the Henon map that one can stabilize the otherwise chaotic motion 
about any pre-chosen non-stable orbit through the use of relatively small 
perturbations. Their ideas were put into practice by Ditto, Rauseo & Spano (1990) 
who succeeded in stabilizing some of the periodic orbits within the chaotic attractor 
of a vibrating magnetostrictive ribbon whose Young modulus varied as a function of 
the imposed magnetic field. In Singer, Wang & Bau (1991), we demonstrated 
experimentally that through the use of feedback control, one can maintain stable 

t All correspondence should be directed to this author. 
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steady flow in a thermal convection loop with heating conditions that in the absence 
of a controller would lead to chaotic flow. The present paper is an extension of and 
elaboration on Singer et al. 1991. 

In this paper, we investigate experimentally and theoretically a relatively simple 
convective system - the thermal convection loop. This system was chosen for 
investigation because it exhibits a rich collection of flow structures ranging from no 
motion to steady motion to chaos and yet i t  can be analysed, at least qualitatively, 
using a low-dimensional dynamic model. Moreover, even though this system is a 
relatively simple one, it is, nonetheless, important since thermal convection loops 
provide a means for circulating fluid without the use of pumps. Such loops are of 
interest for solar heaters, emergency reactor-core cooling, and process industries. 
They also are of interest for understanding warm springs, seawater circulation in the 
oceanic crust, and formation of ore deposits. For a general review of the applications 
and an analysis of these loops, see the article by Metro1 & Greif (1985) and the 
literature cited therein. 

2. Theoretical study 
In this section, we set forth a simple mathematical model for the flow in the loop, 

summarize briefly the solutions of the governing equations for the uncontrolled 
system and then modify these equations to include a feedback controller. Finally, we 
analyse the controlled system. 

2.1. The governing equations 

Consider a thermal convection loop constructed from a pipe bent into a torus and 
standing in the vertical plane as depicted in figure 1. The diameter of the pipe is d ;  
and the diameter of the torus is D .  &' is the angular location of a point on the torus. 
The wall temperature of the pipe Tw(B,t) ,  which may vary both with the angular 
location B and the time t ,  is symmetric with respect to the torus axis that is parallel 
to the gravity vector. Variations in the wall temperature may cause a spatial 
temperature distribution inside the fluid which, under appropriate conditions, may 
induce fluid motion in the loop. 

We analyse the motion in the loop within the framework of Boussinesq's 
approximation using a one-dimensional model consisting of mass, momentum and 
energy balances (Bau & Torrance 1981): 

u = u(t),  (1) 

Tcos(&')dO-Pu, ( 2 )  

and 
aT a2T T = - u - + B - + [ [ T w ( & ' , t ) - ~ .  ae ae2 

( 3 )  

The fluid is assumed to be incompressible and Newtonian. I n  the above, all quantities 
are non-dimensional; Ra = gpATF/(DP) is the loop's Rayleigh number; /3 is the 
thermal expansion coefficient ; g is the gravitational acceleration ; and A T  is the 
averaged wall temperature difference between the loop's bottom and top. The 
timescale is 7 = po Cp.d/(4h), where po is the fluid's average density, C, is the thermal 
capacity, and h (which we assume to be constant) is the heat transfer coefficient 
between the fluid and the pipe's wall. P = 32v7/d2 = 8Pr/Nu is the loop's Prandtl 
number, where u is the kinematic viscosity. Pr = v/a and Nu = h d / k  are the 
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FIGURE 1 .  Schematic description of the experimental apparatus. 

conventional Prandtl and Nusselt numbers, respectively. a and k are the fluid’s 
thermal diffusivity and conductivity; and B = (d /D)2 /Nu is the Biot number. The 
lengthscale is the torus radius, La. 

In addition to the aforementioned Boussinesq’s approximation, the mathematical 
model presented here assumes implicitly that the friction and heat transfer laws are 
similar to those of laminar, fully developed, Poiseuille pipe flow. One would expect, 
and we did in fact observe in the experiments, the development of secondary 
circulation which may significantly modify both the friction and heat transfer laws 
(but which has the positive effect of improving temperature uniformity a t  each cross- 
section of the loop). Unfortunately, more realistic friction and heat transfer laws are 
not known a priori. To obtain these correlations, one may need to solve a spatially 
three-dimensional model or conduct experiments. We justify the use of the simpler 
correlations above on the grounds that the model still provides a qualitatively 
correct picture as has been confirmed by our own experiments ($3.2 below) and those 
by others (i.e. Ehrhard & Muller 1990; Gorman, Widmann & Robins 1984, 1986; 
Widmann, Gorman & Robins 1989) as well as by theoretical studies by Hart (1984, 
1985) and Yorke, Yorke & Mallet-Paret (1987) in which more complicated heat 
transfer and friction factor correlations were used. 

Next, we expand the wall and fluid temperatures in Fourier series in terms of the 
angle 8: 

(4) 
m 

Tw(8, t )  = Wo(t) + C Wn(t) sin (no) ,  
n-1 

and 
00 

T(8, t )  = s,(t) sin (no) +C,( t )  cos (no). ( 5 )  
n-0 

Upon substituting the series (a), (5) into the governing equations (1)-(3) and 
requiring that these equations be satisfied in the sense of weighted residuals, we 
obtain an infinite set of ordinary differential equations. Three equations which are 
similar to the celebrated Lorenz (1963) equation, decouple from the rest of the set 
(with exact closure) and can be solved independently of the other equations without 
need of truncation (Malkus 1972). Thus, one can obtain a description of the dynamics 
of the flow by solving these three equations: 

U/P = c - u ,  (6) 
E = -us-c  (7) 

S = uc-s+RaWl. (8) 
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FIGURE 2. An unsealed bifurcation diagram depicting various possible solutions as the Rayleigh 
number is increased (P = 4). Stable and non-stable solutions are denoted by solid and dashed lines, 
respectively. The dark region represents the appearance of the strange attractor which exists for 
Ra > Ra,. 

In the above, we removed the dependence on the Biot number, B,  via the simple, 
algebraic transformation {u, c ,  s, Ra, P ,  t }  +- 1/(  1 +B)  {u, Ra C,,  Ra S, ,  Ra/( 1 +B) ,  
P, t( 1 +B)2} .  Roughly speaking, the quantities c and s are proportional, respectively, 
to the temperature differences in the fluid between the 3 and 9 o’clock and 6 and 12 
o’clock positions around the loop. 

2.2.  The uncontrolled flow - a summary 

The set (6)-(8) with W, = - 1 are the celebrated Lorenz (1963) equations and have 
been investigated exhaustively in the literature (for reviews, see for example, 
Sparrow 1982 and Bau & Wang 1991). Here, we summarize very briefly some details 
relevant to the present study. The equations (6)-(8) with W, = - 1 possess a number 
of non-transient solutions, such as: (a )  no-motion state (u = c = 0 ,  s = -Ra) ;  (b )  
time-independent motion either in the clockwise (denoted B-) or counterclockwise 
(denoted B,) direction (u = c = (Ra- l)i, s = - 1) ; (c) chaotic motion ; ( d )  periodic 
motions of various periodicities. 

Some of the above solutions and their stability characteristics are depicted 
schematically in figure 2 for a loop Prandtl number P = 4 which we estimate to 
approximate the loop Prandtl number of our experimental apparatus (Singer 1991). 
In figure 2, we denote stable and non-stable solutions by solid and dashed lines, 
respectively. Briefly, if one were to follow the chain of events as the Rayleigh number 
(Ra) increases, one would observe no net motion in the loop for Ra < 1. A t  Ra = 1, 
the no-motion solution loses its stability through a supercritical pitchfork bifurcation 
and is replaced by a time-independent motion. Depending on random disturbances, 
this motion will be either in the clockwise (B-) or counterclockwise (B,) direction. 
The motion solution is stable for 1 < Ra < Ra,(P) = P ( P + 4 ) / ( P - 2 ) ,  where 
Ra,(4) = 16. At that point the steady solution loses stability through a subcritical 
Hopf bifurcation. The resulting limit cycle (equation (11) below with K = 0) is non- 



Controlling chaos in a thermal convection loop 

30 

20 

10 

C O  

- 10 

- 20 

-30 I 
0 10 20 30 40 50 60 70 80 90 

t 

483 

FIGURE 3. The temperature difference between the 3 and 9 o’clock positions is depicted as a 
function of time for Ra - 3Ra, = 48. 

stable and its period increases to infinity as the Rayleigh number decreases to 
Ra,,,(P). At Ra,,,(4) - 7.378, the periodic orbit becomes an homoclinic orbit and 
passes through the no-motion state (a) .  At Ra = Ra,,,(P), there is a bifurcation (the 
homoclinic explosion) which results in an assortment of non-stable periodic and non- 
periodic orbits, known collectively as the non-wandering set, which is initially non- 
attracting. As the Rayleigh number is further increased beyond Ra,(P) < Ra,(P), 
where Ra,(4) - 15.984, the non-wandering set becomes a strange (the Lorenz) 
attractor. The chaotic regime exists for Ra > Ra, with occasional windows of 
periodic behaviour. In the chaotic regime, the motion in the loop consists of irregular 
oscillations with occasional reversals in the direction of the flow as shown, for 
example, in figure 3 for P = 4 and Ra = 3RaH(4) = 48. In figure 3, we depict the 
temperature difference ( c )  between positions 3 and 9 o’clock as a function of time. 
The positive and negative values of c in figure 3 correspond to flow in the 
counterclockwise and clockwise directions, respectively. In $3.2, we show that 
qualitatively similar behaviour is observed in our experiments. 

2.3. Active control of the $ow 
In this section, we focus on the stabilization and destabilization of the time- 
dependent motion solution @+). That is, we wish to obtain (i) steady, non- 
oscillatory flow under conditions in which the uncontrolled flow is nominally chaotic 
(Ra >RUB) without significantly changing the operating conditions and structure of 
the loop; and (ii) chaotic flow under conditions for which the uncontrolled flow is 
nominally time-independent (Ra < Ra,). In our experiments, we used the tem- 
perature difference, c ( t ) ,  between the 3 and 9 o’clock positions around the loop as the 
controlling signal and the power input to the heater as the controlled signal. In the 
mathematical model, we control the wall temperature which is proportional to the 
power input. 

The time-dependent solution at  Ra is c ( t )  = F =  (Ra- 1);. For Ra > RaH, this 
solution is nominally non-stable and c ( t )  varies as a function of time in a rather 
complicated way (see figure 3 for an example). We wish to modify the wall 
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FIGURE 4. The time-independent solutions of the controlled system (P = 4 and K is fixed). K = -2  
and 2 in (a) and ( b ) ,  respectively. The solid and dashed lines correspond, respectively, to linearly 
stable and non-stable solutions. 

temperature so as to retain c ( t )  = C. To this end, we change the wall temperature in 
proportion to the deviation of c ( t )  from the desired value  as 

K 
Ra w, = -l--(c(t)-C),  (9) 

where K is the controller’s gain. Note that (6)-(9) are invariant under the 
transformation {u, c, s, C, K> -+ { - u, - c ,  s, - C, - K ) .  Thus, we may except that 
values of K which stabilize the counterclockwise motion (B,) will destabilize the 
clockwise motion (B-) and vice versa. 

Next, we calculate the time-independent solutions of the augmented system 
(6)-(9) and establish their stability characteristics. These solutions are depicted as 
functions of the Rayleigh number in figures 4(a) (K = -2) and 4(b) (K = 2) for 
negative and positive gains and for P = 4. The solid and dashed lines in figure 4 
correspond, respectively, to linearly stable and non-stable solutions. Here, of prime 
interest to us, is the counterclockwise-motion solution {B, : u = c = (Ra- l)i,  s = l} 
which is the same for both the uncontrolled and controlled systems and whose 
stability characteristics we wish to alter. The clockwise-motion solution of the 
controlled system is {B- : u = c = K -  (Ra - l);, s = - l}. The controlled system also 
admits the no-motion solution {a :  u = c = 0 ,  s = -Ra+K(Ra- i);}. 
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FIGURE 6. The amplitude of the limit cycle, y(P, K ) ,  is depicted for P = 4 aa a function of K .  

Positive (negative) values of y(P, K )  correspond to super (sub) critical bifurcation. 

2.3.1. The counterclockwise motion solution and its stability under active control 
Linear stability analysis of (6)-(9) conducted for small disturbances around the 

time-independent flow (B,) leads to the following characteristic equation for the 
growth rate u: 

This equation suggests that the counterclockwise solution (B,) is stable for Ra values 

u3 + (P+ 2) a2 + [Ru+P-K(Ru- l);] u + P(Ru - 1); ( ~ ( R u -  1)i -K)  = 0. (10) 

which satisfy 
(P - 2) [Ra -Ra, (P) ]  ~ ( R u -  1); 2 K and < -K.  

2(Ra- 1); 

We denote the Ra values at the low and high marginal stability limits as RaL(K) and 
Ra"(P,K), respectively. The magnitude of the low (high) stability limits is 
independent of (dependent on) the loop's Prandtl number (P) .  In  figure 5, both 
stability limits are depicted as functions of the gain K for P = 4. 

It is apparent from figure 5 that negative (positive) values of K serve to stabilize 
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FIQURE 7 .  The ' uc '  projection of the motion trajectories for the controlled system with Ra 
exceeding the marginal stability limit (K = -2, P = 4, and Ra = 50). 

(destabilize) the counterclockwise-motion solution. The low limit of stability, 
BaL(K), corresponds to a bifurcation through a simple eigenvalue (exchange of 
stability). Along the line RaL(K), the counterclockwise-motion solution (B,) 
intersects at RaL(K) = 1 with the no-motion solution for K < 0 (figure 4a) and a t  
RaL(K) = 1 +iK2 with what eventually will become the clockwise-motion solution 
(B-) for K > 0 (figure 4 b ) .  

The upper stability limit 

[(P'-4) (P+ l)+K2]4-K 
P-2  

RaH(P,K)  = 1 + 
corresponds to a Hopf bifurcation which gives birth to a limit cycle. We used the 
'projection technique' described in Iooss & Joseph (1989) to calculate the limit cycle. 
Since the procedure is somewhat lengthy we do not provide the derivation here. The 
interested reader is referred to Wang's (1991) dissertation for details. In the vicinity 
of the bifurcation point, the limit cycle can be described, to  a first approximation, by 

(11) 
where y(P,  K )  is depicted in figure 6 as a function of K for P = 4. In  the above, 

(2P-l)(RaH-l)4+K(l-P) 
P(w; + 1) 

A , =  -w0 

Positive and negative values of y(P,  K )  correspond, respectively, to  super- and 
subcritical bifurcations. For K < KO - 1.635, the resulting limit cycle is subcritical 
while for 2( 1 + P)' > K > KO,  i t  is supercritical. As the loss of stability of B, is strict 
(Re (aa/aRa > 0 for all K ) ,  supercritical (subcritical) limit cycles are (non) stable. 
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For Ra < RaH(P, K), the counterclockwise motion (B,) is stable with respect to 
small disturbances. For Ra > RaH(P, K )  this solution loses stability. Depending on 
the value of K ,  one may observe various types of behaviour. For K < 0, the system 
will exhibit oscillatory, chaotic behaviour with occasional reversals in the flow 
direction. The trajectories in phase space will tend, however to spend more time 
around B, than B-. That, is, most of the time the flow will be in the counterclockwise 
direction. See, for example, figure 7, where we depict the 'uc' projection of the 
chaotic motion trajectories for K = - 2 ,  P = 4 ,  and Ra > RaH. 

For 0 < K < KO, after initial, chaotic transients die out, the system will tend to 
stabilize at B-. For KO < K < 2(P+ l);, the limit cycle generated at  the Hopf 
bifurcation is stable. Thus, depending on initial conditions, one may observe either 
periodic oscillations around B, or a stable clockwise motion (B-). Suppose we have 
time-independent counterclockwise motion (B,) in the loop corresponding to Ra = 9 
and K = 2. That is, we are within the stable region of figure 5. Now we gradually 
increase the Rayleigh number but maintain the controller's gain fixed at K = 2. This 
corresponds to moving along the vertical line K = 2 in figure 5.  The chain of events 
is described in figure 8 where the velocity u is depicted as a function of the Rayleigh 
number. The U-values shown in figure 8 correspond to the intersection of the phase- 
space trajectories with the Poincare' plane s = - 1.  For Ra < 10, we observe stable B, 
motion. At Ra = 10, this solution undergoes a supercritical Hopf bifurcation into a 
stable limit cycle, a sample of which we depict in figure 9 for Ra = 10.5. The period 
of the limit cycle increases gradually as the Rayleigh number increases. At Ra - 10.6, 
the limit cycle loses stability. After transients die out (not shown in figure 8), the 
system settles down into a clockwise motion state (B-).  

The lower and upper limits of stability intersect at  K = 2( 1 + P):  in figure 5 .  At this 
point, the bifurcation occurs through a double eigenvalue. For larger values of K ,  no 
stable, steady, counterclockwise-motion solutions exist. In numerical experiments, 
we have observed in this region a variety of periodic orbits; but, as the region of 
K > 2( 1 + P)i is not central to this paper, we do not report any further results here. 

2.3 .2 .  The clockwise-motion solution (B-) and its stability 
The controller changes the nature of the clockwise solution from that of the 

uncontrolled system. The stability characteristics of this solution (B-) are depicted 
for K < 0 and K > 0 in figures 4 (a) and 4 ( b ) ,  respectively. For K < 0 (figure 4a) ,  this 
solution is stable for 1 < Ra < m2 + 1, where 

[ ( P 2 - 4 )  ( P +  l)+K*]t+K(P-l) 
P - 2  

m =  

The upper boundary of stability corresponds to a Hopf bifurcation. For K > 0 and 
Ra < K2 + 1, the B- solution corresponds to flow in the counterclockwise direction. A t  
Ra = 1 +iK2,  the solutions B- and B, intersect (figure 4 b ) .  The counterclockwise 
motion part of B- is linearly stable for 1 < Ra < 1 +g2 and K < 2(1 +P)t .  That is, 
a stable no-motion solution and a counterclockwise-motion solution coexist in this 
interval. 

2.3.3. The no-motion solution and its stability 
The controller does not affect the stability characteristics of the no-motion 

solution. For K < 0, the no-motion solution is stable for Ra < 1. For K > 0, this 
solution is stable for Ra < 1 +K2.  This, however, does not represent stabilization of 
the no-motion state as the effective Rayleigh number corresponding to the 
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FIQURE 9. The orbit of a limit cycle generated through supercritical Hopf bifurcation for 
Ra = 10.5, P = 4, K = 2. 

aforementioned stability limit Raell = Ra-K(Ra= l) i  = 1. I n  order to stabilize the 
no-motion state, one needs to  employ a different control strategy than the one 
described here (i.e. that  of Singer & Bau 1991). 

2.3.4. The eflect of the controller on the Jlow 
I n  order to examine the impact of the controller on the dynamics of the flow, we 

conducted a few numerical experiments. In  figure 10, we depict the temperature 
difference between the 3 and 9 o'clock positions ( c )  as a function of time for the 
controlled (K = -35, solid line) and uncontrolled (K = 0, dotted line) systems for 
Ra = 50 and P = 4. This is 3.125 times the critical value of the Rayleigh number 
needed to induce chaos in the uncontrolled system. The uncontrolled signal exhibits 
oscillatory, chaotic behaviour with occasional reversals in the direction of the flow 
while the controlled signal, after the initial oscillations die out, corresponds to  a time- 

U 



Controlling chaos in a thermal convection loop 489 
16 r 

12 

8 

4 

0 

-4 

-8 

- 12 

- 16 

-201  " " " " " " " " 
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

Time 
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FIGURE 1 1. The eigenvalues of equation (10) are depicted in the complex plane aa functions of 

the controller's gain for K < 0, Ra = 50 and P = 4. 

independent flow. The controller is capable of restoring the counterclockwise flow to 
its steady-state value in the presence of finite-amplitude disturbances as long as these 
disturbances remain within the domain of attraction of the controlled solution. 

To understand the effect of the controller's gain on the system's stability, we 
depict in figure 11 the location of the eigenvalues (a) of equation (10) in the complex 
plane as a function of the gain (K) for Ra = 50. For K = 0, there are two complex- 
conjugate eigenvalues with a positive real part (for Ra = 50, the uncontrolled system 
is non-stable). As K decreases below zero, the real part of the complex-conjugate pair 
decreases until it crosses the imaginary axis at the marginal stability limit 
(K = -4.857). A further decrease leads to  stabilization of the counterclockwise- 
motion solution. The real part of the eigenvalue (figure 11) dictates the rate of 
approach of c ( t )  to its steady, time-independent value (c). The imaginary part is 
responsible for the oscillatory transient depicted in figure 10. As the ratioRe(a)/Im(cr) 
is relatively small, the transient is relatively long. Note that in the absence of noise, 
the controlled system operates with virtually the same power input as the 
uncontrolled one, but with a vastly different flow structure. 
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C 

The analysis above suggests that  positive values of K destabilize the counter- 
clockwise motion @+). Since the same values of K stabilize the clockwise motion (&), 
use of a controller with a positive gain (K > 0) will result in reversing the direction 
of the flow. If we wish to obtain oscillatory, chaotic flow for heating rates smaller 
than those a t  which such flow would normally occur in the uncontrolled system, we 
need to  destabilize both solution branches, B, and B-, simultaneously. This can be 
accomplished by modifying the controller to yield 

K 
Ra 

W, = -1--[sgn(c)c( t ) - -1 .  

The results of this strategy are depicted in figure 12 for Ra = 13 < RaH,  K = 1 ,  and 
P = 4. In  this figure, we show the ‘cs’ projection of a phase portrait of the attractor. 
The corresponding time series for c (not shown) is qualitatively similar to the one 
depicted in figure 3. I n  the case of destabilization, the effective Rayleigh number of 
the loop will vary widely as a function of c( t ) .  

3. Experiments 
I n  this section, we first describe the experimental apparatus, then we demonstrate 

that the flow observed in the loop is qualitatively similar to  the predicted one, and 
finally, we show that the control strategy described in $2.3 can actually be used in 
practice. 

3.1 .  Description of the experimental apparatus 

The experimental apparatus is similar to  that employed by Creveling et al. (1975), 
Gorman et al. (1984, 1986), and Widmann et al. (1989). The apparatus (figure 1) 
consists of a Pyrex pipe of diameter d ( =  0.030m) bent into a torus of diameter 
D ( =  0.760 m). The apparatus stands in the vertical plane. The lower half of the 
apparatus is heated with a uniform-heat-flux resistance heater while the upper half 
is submerged in a jacket containing a flowing coolant. The coolant is circulated at  a 
sufficiently high flow rate to approximate a uniform wall temperature. The heater 
consists of a metallic layer (instatherm) coated directly on the glass tube. This 
arrangement assures low thermal resistance between the glass tube and the heater. 
The heater is well insulated to minimize heat losses to the ambient. The power supply 
to the heater is computer controlled. 
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FIQURE 13. The experimentally measured temperature differences, (a) AT!-$ and ( b )  AT,_,,, are 
depicted as functions of time for a heating input of 700 W. The system is not controlled. 

In  our experiments, we measured the power input to the heaters, the coolant's 
temperature and the temperature differences between the 3 and 9 o'clock positions 
and between the 6 and 12 o'clock positions around the loop which we denote as 
AT3-9 and AE-12, respectively. All quantities were continuously monitored as 
functions of time with the aid of a computer-controlled data acquisition system. The 
direction of the flow in the loop, and to some extent, the velocity profile could be 
directly observed owing to the presence of small particles in the liquid. 

3.2. The uncontrolled Jlow in the loop 

Below, we briefly describe the various flow regimes observed in the loop as a function 
of the input heating rate in the absence of a controller. When heating and cooling 
were applied to an isothermal loop, depending on (stochastic) initial conditions and 
the loop's imperfections, the fluid motion occurred either in the counterclockwise or 
the clockwise direction. For relatively low heating rates, the flow inside the loop was 
time-independent and unidirectional. As the heating rate exceeded some critical 
value (&,), the flow became oscillatory and time-dependent with occasional reversals 
in direction. The critical heating rate &, depended on the coolant's temperature. For 
example, for coolant temperatures of 8 and 20 "C, Q, - 315 and 215 W, respectively. 

Representative experimental results for the time-dependent flow are depicted in 
figures 13-15 for the heating rate of & - 3Q, = 700 W. Figures 13(a) and 13(b) 
depict, respectively, AT,_, and as functions of time. The motion appears to 
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FIGURE 14. The experimentally measured temperature difference AT,_, is depicted as a function 

of the temperature difference AT6-,* for the uncontrolled system. Q = 700 W. 

12 

0 

FIGURE 15. The attractor is reconstructed, using the time delay technique (with a time delay of 
lOs), in a three-dimensional embedding space from the time series depicted in figure 13(a). 
Q = 700 W. 

consist of irregular oscillations in the flow rate. Positive and negative AT3-, 
correspond to counterclockwise (u > 0) and clockwise (u < 0) motions, respectively. 
Witness the relatively high temperature oscillations associated with the non-steady 
flow. The experimental time series (figure 13a) qualitatively resembles the time series 
depicted in figure 3, which was obtained from the mathematical model. Similar flows 
were observed by Creveling et al. (1975) and Gorman et al. (1984, 1986). Since the 
largest Lyapunov exponent associated with this flow is positive (Singer 1991), we 
conclude that the flow is chaotic. 

In  figure 14, we depict A!l-, versus AT6-12 to  obtain a phase portrait of the system 
while in figure 15, we show a three-dimensional portrait of the attractor constructed 
from the AT3-, time series (figure 13a) using the time delay technique and a three- 
dimensional embedding space. The correlation dimension of the attractor is estimated 
as - 2.2 (Singer 1991). The experimental phase-space portraits in figures 14 and 15 
resemble the now well-known phase portraits of the Lorenz (1963) attractor which 
were obtained from numerical integrations of (6)-(8). 

Interesting though the chaotic motion might be, the study of its dynamics is not 
the subject of this paper. The description above was presented for two reasons: first, 
to acquaint the reader with the phenomena observed in the loop in the absence of a 
control mechanism ; and second, to demonstrate that the mathematical model 
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FIGURE 16. The experimentally measured temperature difference AT!, is depicted as a function 
of time for a heating input of 700 W. The controller was activated 33 minutes into the run. 

presented in $2 is capable of providing a qualitative description of the flow 
phenomena observed in the loop. 

3.3.  The controlled system 

The theoretical investigation presented in 5 2 suggests that the characteristics of the 
motion can be modified considerably with the use of a controller. In this section, we 
wish to demonstrate that these ideas can be used in practice. For example, suppose 
the chaotic oscillations observed in figures 13-15 are an undesired phenomenon. We 
wish to suppress this oscillatory behaviour and make the flow approximately steady 
while operating at power levels which nominally yield chaotic motion. Our goal is to 
achieve this objective without affecting the system’s structure and with minimal 
changes in the power input. 

To accomplish this objective, we adopt the proportional control strategy described 
in $2.3. For the steady, non-chaotic motion, the temperature difference is time- 
independent. We denote this time-independent value as =. Next we argue that 
the steady solution, albeit non-stable, still exists in the chaotic regime for 
Q = Qo > Qc,  where AT,-, is now time-dependent. We wish to modify the heat input 
to the loop in proportion to the deviations of AT,-, from the desired value G. To 
this end, we set the feedback Q = Q , + K ( A T , _ , - G ) .  The value which 
corresponds to Qo need not be accurately known. If, for example, we err in estimating 
the correct value of G, the controller will adjust the average power level so that 

The results of this strategy are depicted in figure 16 where we show the 
temperature difference between the 3 and 9 o’clock positions depicted as a function 
of time for a nominal heat input Qo - 3Q, = 700 W. To contrast the uncontrolled and 
controlled behaviour, we depict initially ( t  < 33 minutes) the uncontrolled flow in 
figure 16. Note the oscillatory behaviour similar to that depicted in figures 3 and 13. 
The controller with a gain of K = -39 W/OC, was activated 33 minutes into the run. 
The transition from the chaotic flow into a relatively steady, laminar flow is self- 
evident. We ran the experiment for over 15 hours, maintaining the type of steady flow 

corresponds to the time-independent state. 
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FIQURE 17. The power variations mandated by the controller are depicted as functions of time. 
The controller was activated 33 minutes into the run. 

shown in figure 16 for t > 60 minutes. The controller also succeeded in overcoming 
finite-amplitude disturbances deliberately int,roduced into the loop. The power 
variations mandated by the controller are depicted in figure 17. Once the flow has 
been brought close to its steady-state value, the power variations required to  
maintain this value are within (1 k0.08) Q0. 

Next, we investigated the minimal gain required to maintain the steady flow in the 
chaotic regime. This was done by stabilizing the flow with a relatively large negative 
gain and then gradually decreasing the absolute magnitude of the gain until 
oscillatory behaviour was observed. We found this minimal gain to  be approximately 
K = - 27 W/OC ; and within the experimental precision, it appears to be independent 
of the nominal heat input Qo.  This is in contrast to the predictions of the 
mathematical model which suggested that the marginal value of K would decrease 
as the heating rate (or the Rayleigh number) increased. This deviation can be 
attributed to  the fact that the mathematical model we used is too simple to provide 
accurate quantitative predictions. Also, the Prandtl number (P) in the experiment is 
not a constant, declining as the power input is increased. In  contrast, the 
mathematical model assumes 1’ is constant. 

To illustrate how the controller operates, we briefly describe the mechanism 
responsible for the chaotic, oscillatory behaviour of the flow in the loop (Welander 
1967). To this end, imagine that a small disturbance causes the flow to slow down 
below the steady-state flow rate. As a result, the fluid spends more time in the 
heater/cooler section, gains/loses more/less heat than usual and emerges from the 
heater/cooler with a temperature higher/lower than usual. This, in turn, causes an 
increase in the buoyancy force with a corresponding increase in the fluid velocity. 
Once the fluid velocity increases, the process reverses itself. Under appropriate 
conditions, these oscillations amplify and, in the uncontrolled system, eventually 
lead to the chaotic behaviour depicted in figures 13-15. In contrast, when the 
controller is operating, it detects the appearance of disturbances by monitoring 
deviations in the temperature difference AT3-g --. Once a deviation is detected, 
the controller takes action to  counteract its effect. For instance, if the deviation 
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FIGURE 18. The controller is being used as a device for switching the direction of the flow 
(& = 700 W). For t < 12.5 (K = -78  W/"C) and t > 12.5 ( K  = 78 W/OC), the controller stabilizes 
the counterclockwise and clockwise motions, respectively. 

tends to accelerate/decelerate the flow, the heating rate is increasedldecreased to 
counteract this effect. As the controller applies only relatively small perturbations to 
the input power, it will be able to counteract only small oscillations. Consequently, 
if one wishes to control an already chaotic flow, one may need to  wait to activate the 
controller until the system comes into the vicinity of the state we wish t o  maintain. 
The size of the basin of attraction of the controlled flow typically increases with 
increasing absolute gain. Once the controller succeeds in laminarizing the flow, it will 
prevent the oscillations from increasing beyond the controllable magnitude. 

We note in passing that, with the aid of the controller, we could have brought the 
system up to a desired power level without ever observing chaotic behaviour. This, 
of course, may be the desired mode of operation in practical applications. However, 
for illustration purposes, we demonstrated here that the controller can successfully 
perform the more daunting task of suppressing the chaotic behaviour once it has 
already occurred. It also should be noted that we made no attempt to optimize the 
controller and that it is likely that the magnitude of the control signal can be reduced 
further by adopting a more sophisticated control strategy than the one reported 
here. 

Since the controller can stabilize either the counterclockwise or the clockwise 
motion, it can be used as a switch effecting a change in the flow direction. This is 
demonstrated in figure 18 where we initially stabilized the flow in the counter- 
clockwise direction (& = 700 W, K = -78 W/"C). At time - 12.5 minutes, we 
changed the control strategy so as to  stabilize the clockwise motion by flipping the 
sign of K (i.e. K = 78 W/"C). As a result, we managed to reverse the direction of the 
flow a t  will. 

Finally, we demonstrate that  the controller can be used to  induce chaos under 
circumstances in which chaos will not normally occur. To this end, we use a positive 
feedback and adopt a similar control strategy to the one used in the mathematical 
model, i.e. & = &o+K[sgn(AT,-s)AT,- , -~] .  The results of this strategy are 
depicted in figure 19, where we show the temperature differences AT,_,, and AT!-s as 
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FIQURE 19. The controller is being used to induce chaos at Q, = 150 W with K = 35 W/OC. The 
uncontrolled system will not exhibit chaotic behaviour until Q N 250 W. The figure depicts the 
temperature difference (a)  between the 3 and 9 o'clock positions and ( b )  between the 6 and 12 
o'clock positions as functions of time. 
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functions of time for the nominal power input Q = 150 W - O.SQ,. I n  the absence of 
a controller, the transition to chaos occurs at about Q, - 250 W. To illustrate the 
difference between the uncontrolled and controlled systems, we depict initially the 
uncontrolled behaviour for t < 1800 s. Witness the relatively time-independent, 
counterclockwise motion. The controller, with a gain K = 39 W/OC, was activated a t  
t = 1800 s. It causes flow instabilities to  amplify, as is evident in figure 19, until 
eventually chaotic flow develops. Owing to the relatively large-amplitude oscillations 
of AT,.,, the control strategy requires power variations over a fairly substantial 
interval. The average power supplied to the loop in the chaotic regime was about 
170 W, somewhat higher than the nominal power Q,,. We succeeded in destabilizing 
time-independent flows and obtaining chaotic behaviour a t  heating rates as low as 
100 W. 

4. Conclusion 
The use of active (feedback) control to modify various physical processes such as 

noise and vibrations has attracted a considerable amount of interest. Surprisingly, 
not withstanding the plethora of potential applications, very little has been done in 
using active control to modify convective processes. In  this paper, we have 
demonstrated both theoretically and experimentally that active control can be used 
to significantly alter the flow characteristics of a simple convective system. Whether 
these or similar ideas also can be implemented in more complicated situations, such 
as those involving Be’nard convection, is still an open question ; but i t  is certainly one 
worth pursuing. 

This work was supported, in part, by the National Science Foundation through 
Grant CBT 83-51658. Mr Kevin Turk assisted us with some of the experiments. 
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